The Hermite–Hadamard inequality for log-convex functions
نویسندگان
چکیده
منابع مشابه
JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملOn The Hadamard’s Inequality for Log-Convex Functions on the Coordinates
Inequalities of the Hadamard and Jensen types for coordinated log-convex functions defined in a rectangle from the plane and other related results are given.
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملInequalities for 3-log-convex Functions
This note gives a simple method for obtaining inequalities for ratios involving 3log-convex functions. As an example, an inequality for Wallis’s ratio of Gautchi-Kershaw type is obtained. Inequalities for generalized means are also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 2012
ISSN: 0362-546X
DOI: 10.1016/j.na.2011.08.066